De Rham–Hodge–Kodaira Operator on Loop Groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dirac Operator on Compact Quantum Groups

For the q-deformation Gq , 0 < q < 1, of any simply connected simple compact Lie group G we construct an equivariant spectral triple which is an isospectral deformation of that defined by the Dirac operator D on G. Our quantum Dirac operator Dq is a unitary twist of D considered as an element of Ug ⊗ Cl(g). The commutator of Dq with a regular function on Gq consists of two parts. One is a twist...

متن کامل

Operator Algebras, Free Groups and Other Groups

The operator algebras associated to non commutative free groups have received a lot of attention, by F.J. Murray and J. von Neumann and by later workers. We review some properties of these algebras, both for free groups and for other groups such as lattices in Lie groups and Gromov hyperbolic groups. Our guideline is the following list of results for the free group Fn over n ≥ 2 generators. (1)...

متن کامل

Multiplets of Representations and Kostant’s Dirac Operator for Equal Rank Loop Groups

Let g be a semisimple Lie algebra, and let h be a reductive subalgebra of maximal rank in g. Given any irreducible representation of g, consider its tensor product with the spin representation associated to the orthogonal complement of h in g. Recently, B. Gross, B. Kostant, P. Ramond, and S. Sternberg [2] proved a generalization of the Weyl character formula which decomposes the signed charact...

متن کامل

Factorization in Loop Groups

0. Introduction 1 0.1. The Finite-Dimensional Case SU(n) 2 0.2. The Infinite-Dimensional Case LSU(n) 4 0.3. Plan of this Dissertation 13 1. Factorization and Coordinates for Finite-Dimensional Lie Groups 16 1.1. Lie Algebras 16 1.2. Lie Groups 19 1.3. Parametrizations with Sequences of Simple Roots 22 1.4. Parametrizations with Inversion Sets 26 2. Reduced Words for Infinite Elements of Affine ...

متن کامل

From Loop Groups to 2-Groups

We describe an interesting relation between Lie 2-algebras, the Kac– Moody central extensions of loop groups, and the group String(n). A Lie 2-algebra is a categorified version of a Lie algebra where the Jacobi identity holds up to a natural isomorphism called the ‘Jacobiator’. Similarly, a Lie 2-group is a categorified version of a Lie group. If G is a simply-connected compact simple Lie group...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1997

ISSN: 0022-1236

DOI: 10.1006/jfan.1996.3077